

Escuela de Postgrado y Educación Continua

Edificio Central – Av. 1 esquina 47 La Plata Provincia de Buenos Aires República Argentina

Teléfono: 54 221 422 1862 Internos: 187/109

Fax: 54 221 425 9471

e-mail: epec@ing.unlp.edu.ar

http: www.ing.unlp.edu.ar/decanato/epec

Horario: 8:00 a 13:30h

FACULTAD DE INGENIERÍA 1897 - UNLP - 2017

CURSO DE POSTGRADO

COMPATIBILIDAD ELECTROMAGNETICA EN SISTEMAS DE POTENCIA

OBJETIVOS

Fundamentar la teoría de los fenómenos perturbadores que contaminan a las redes de suministro eléctrico de alta energía degradando la compatibilidad electromagnética que deben tener con los equipos e instalaciones de los usuarios, poniendo énfasis en la enseñanza de las técnicas de ingeniería para la medición, el análisis, la evaluación y el desarrollo de proyectos de mitigación.

CURRÍCULA

I. Conceptos generales.

Definiciones generales. Compatibilidad. Electromagnética. Reglas. Normas Internacionales.

2. Parpadeo (Flicker).

Definiciones sobre fluctuaciones de tensión y *flicker*. Cálculo del Pst (Plt). Generadores de *flicker*. Efecto del *flicker*. Experiencias de percepción visual. Sensibilidad de los distintos sistemas de iluminación a las fluctuaciones de tensión. Niveles de compatibilidad, emisión y susceptibilidad (Normas IEC e IEEE). Técnicas de Medición. Flickerímetro. IEC 61000-4-15, IEC 61000-4-30. Mitigación del *flicker*. Técnicas de estudio (ATP/Matlab/ PSpice). Modelos empleados para distintos análisis. Presentación de casos prácticos. Efectos de la inserción de energías renovables en el flicker.

3. Armónicas.

Definiciones. Revisión teórica. Cargas que generan armónicas. Efecto de las armónicas sobre equipos sensibles. Niveles de compatibilidad, emisión y susceptibilidad, tanto en redes públicas como en industrias. Normas IEC e IEEE. Técnicas de Medición. Transductores. Equipos de medición. Normas IEC IEC 61000-4-7, IEC 61000-4-30. Medición del Factor de Potencia en presencia de armónicas. FP distorsionante y no distorsionante. Los nuevos sistemas de iluminación (LFC/LEDs) y la emisión de armónicas. Mitigación de las armónicas. Técnicas de estudio (ATP/Matlab/PSpice). Modelos empleados para distintos análisis. Presentación de casos prácticos. Efectos de la inserción de energías renovables en las armónicas.

4. Otras perturbaciones

Sub/sobretensiones (Sags y Swells) temporarias. Microinterrupciones. Técnicas de mitigación de huecos de tensión en industrias. Desbalances en sistemas trifásicos. Definición y técnicas de medición. Transitorios breves. Presentación de mediciones de conexión/desconexión de bancos de capacitores. Perturbaciones de alta frecuencia (caso de variadores de velocidad de motores). Frecuencia. Corriente continua. Comunicaciones utilizando la red

TIPIFICACIÓN

Válido para carreras de postgrado

COORDINADOR

Ing. Gustavo Barbera

DOCENTES

Ing. Pedro Issouribehere Ing. Daniel A. Esteban Ing. Juan C. Barbero Ing. Gustavo Barbera Ing. Fernando Issouribehere Ing. Hugo Gastón Mayer

DURACIÓN

40 horas teórico-prácticas

FECHA DE INICIO

26 de junio de 2017

HORARIO

Intensivo. Lunes 26 a viernes 30 de junio de 9:00 a 13:00 y de 14:00 a 18:00

LUGAR DE DICTADO

Sala de Conferencias del Departamento de Electrotecnia Sala de ensayos IITREE-LAT

NÚMERO DE ASISTENTES

Mínimo: 8 Máximo: 20

COSTO

Arancel: \$ 4165 **Beca:** \$ 583

Becas para alumnos de grado y postgrado FI-UNLP sin costo

CONDICIONES DE INGRESO

-Profesionales y académicos, que se desempeñen en la investigación y el desarrollo de equipos e instalaciones eléctricas perturbadoras para la red de suministro, tales como los de tecnología de electrónica de potencia, iluminación no incandescente, procesos industriales en general y acerías, laminadores, electrólisis y otros en particular.

-Profesionales que se desempeñen en el área de energía o en empresas de producción con elevados consumos eléctricos. Profesionales con experiencia en planeamiento, proyecto y construcción de redes de potencia, públicas e industriales. Profesionales de los organismos del estado con competencia en energía eléctrica.

-Estudiantes de posgrado o del último año de la carrera de Ingeniería Electricista y Electrónica interesados en profundizar sus conocimientos en Compatibilidad Electromagnética.

CERTIFICACIÓN

De Aprobación: asistencia al curso 100 % y evaluación satisfactoria del examen final.

De Asistencia: con el 85% de presentismo a las clases teórico- prácticas